DOI: 10.5281/zenodo.15290409 Link: https://zenodo.org/records/15290409

COMPARATIVE ANALYSIS OF PHISHING ATTACKS AND OTHER CYBERATTACK TYPES

Kodirov Akbarjon Student of Academic Lyceum named after S.H. Sirojidinov <u>tojiakbarova@gmail.com</u> +998933858491

Absract. In recent years, the rapid development of information technology has been accompanied by a surge in cybersecurity issues. Among the various cyberattack methods, phishing stands out as one of the most common and deceptive techniques. Unlike many technical attacks, phishing relies heavily on human psychology and user inattention. This paper presents a detailed overview of phishing attacks and compares them with other prevalent forms of cyberattacks.

Keywords: phishing, types, attack, whaling, smishing, vishing, spear phishing.

I. INTRODUCTION

Phishing is a cybercrime technique in which attackers impersonate legitimate institutions or entities to trick individuals into disclosing sensitive information such as passwords, bank account details, and credit card numbers. Typically, phishing is executed through deceptive emails, fake websites, or messages on social media and mobile platforms.

How a phishing attack works:

- 1. The attacker creates a fake website or message that appears legitimate.
- 2. The user is lured into clicking a link and is redirected to the fake site.
- 3. The user inputs personal data, believing the site is real.
- 4. The attacker collects the entered data and uses it for malicious purposes[1].

Types of Phishing:

- 1. Spear Phishing targeted phishing aimed at a specific person or organization.
- 2. Whaling targeting high-level executives or officials.
- 3. Smishing phishing via SMS messages.
- 4. Vishing voice phishing, using phone calls to extract data.

Consequences of phishing attacks. Phishing can result in serious outcomes such as emptied bank accounts, data breaches, brand reputation damage, and financial losses for individuals and organizations.

II. THEORETICAL ANALYSIS AND RESULT

Based on 2024 data, here is a comparative table highlighting the countries most affected by phishing attacks, using the percentage of users encountering phishing attempts as reported by Kaspersky.

Table 1. Statistics of countries affected by p	phishing attacks,	for 2024
--	-------------------	----------

Country	Percentage of users affected
Peru	19.06%
Greece	18.21%
Vietnam	17.53%
Madagascar	17.17%
Ecuador	16.90%
Lesotho	16.87%

16.70% Somalia 16.55% Brunei 16.51% Tunisia Kenya 16.38%

These figures represent the share of Kaspersky users in each country who encountered phishing attempts in 2024. Notably, Peru had the highest percentage, with nearly one in five users affected. This data underscores the global reach of phishing attacks and highlights the importance of cybersecurity awareness and protective measures across all regions [2].

Based on available data, here is a comparative table highlighting the financial damages caused by phishing attacks in various countries during 2024.

Table 2. Amount of damages

No 5

Country	Estimated Losses (USD)	Notes			
United States	\$16 billion (cybercrime total)	Phishing and investment frauds were			
		primary contributors to the total cybercrime			
		losses.			
Australia	\$2.74 billion (scams total)	Significant portion attributed to phishing			
		and email scams.			
Vietnam	\$744 million (online frauds total)	Common scams included fake investmen			
		schemes and impersonation.			
India	\$20.3 million (high-value cyber	High-value cyber fraud cases increased			
	frauds)	over four-fold in FY2024.			
Cryptocurrency	\$800 million	Losses in 2024 due to phishing attacks			
Sector		targeting crypto users.			

These figures underscore the significant financial impact of phishing attacks globally in 2024. The United States and Australia reported the highest losses, with phishing being a major contributor to the overall cybercrime damages. Vietnam and India also faced substantial losses due to online frauds, including phishing schemes. The cryptocurrency sector experienced notable phishing-related losses, emphasizing the need for enhanced security measures across all digital platforms.

Other types of cyberattacks:

- 1. Malware – malicious software that damages or takes control of a system.
- 2. Ransomware – encrypts a user's data and demands a ransom to restore access.
- 3. SQL Injection – exploits vulnerabilities in web applications to access databases.
- 4. Man-in-the-Middle (MitM) – intercepts communication between two parties.
- 5. Denial of Service (DoS) – overloads servers to disrupt services[3].

Table 5. Comparison with Other A					VIII Other Attac
Aspect	Phishing	Malware	Ransomware	MitM	SQL Injection
Primary Goal	Steal user	Damage or	Encrypt files &	Intercept	Exploit
	credentials	control system	demand ransom communication		database via
					web app
Fechnical Skill	Low	Medium to	High	High	High
Needed		High			
Target	Mass users or	Any system	General public	Parties in	Web
	specific		or companies	communication	applications
	individuals				
Exploitation	Social	Malicious	Encryption and	Eavesdropping on	Injection into
Method	engineering	software	extortion	network	SQL queries

Table 3 Comparison with Other Attacks

Table 4. Phishing attack prevention methods

Prevention Method	Phishing	Spear Phishing	Vishing/Smishi ng	Malware- Based	- Email Spoofing
				Phishing	

International Scientific-Electronic Journal "Pioneering Studies and Theories" ISSN: 3060-5105 www.pstjournal.uz April May

Nº 5 Volume 1

April, May, June 2025

User Awareness	High impact	Very high	Medium	Limited	High
Iranning		impaci			
Two-Factor	High	High	Limited	Helpful	Limited
Authentication (2FA)					
Spam/Phishing Filters	High	Moderate	Moderate	High	High
Secure Email Gateways	High	High	Not applicable	High	High
Antivirus/Anti-	Limited	Not effective	Not applicable	Critical	Limited
Malware Software					
Regular Software	Not direct	Not direct	Not direct	Helpful	Not
Updates					applicable
Email Authentication	High	High	Not applicable	Not applicable	Critical
(SPF, DKIM, DMARC)	-	_			
URL and Link	Critical	Helpful	Moderate	Critical	Critical
Scanning Tools					
Incident Response Plan	Reactive	Essential	Helpful	Helpful	Helpful
	measure				

Conclusion

Phishing is a widespread and dangerous cyberattack that takes advantage of human vulnerability rather than technical flaws. While other cyberattacks may require complex tools and hacking knowledge, phishing is often simple but highly effective. Theref Here's a list of relevant **literature sources (2020–2024)** related to phishing attacks, their prevention, and comparative cyberattack research. These works are a good foundation for academic analysis or inclusion in your project:

Bibliography

1. Gupta, B., & Shukla, A. (2020). *Phishing and Social Engineering Attacks: Strategies and Techniques*. CRC Press. A comprehensive overview of phishing strategies and how social engineering is used to exploit users.

2. Hutchins, R., & Alenezi, M. (2021). *Cybersecurity Awareness and the Role of Education in Preventing Phishing, Journal of Cybersecurity Education, Research and Practice*, 2021(1), Article 3.

3. Huang, Y., & Bashir, M. (2021). *Impact of User Training on Phishing Susceptibility: A Meta-Analysis. ACM Transactions on Privacy and Security (TOPS)*, 24(4), 1–28.

4. Tariq, M. U., et al. (2022). *Phishing Attacks: Recent Trends and Challenges. Journal of Information Security and Applications*, 65, 103133. <u>https://doi.org/10.1016/j.jisa.2022.103133</u>

5. Jakobsson, M., & Liao, Q. V. (2022). *Deception by Design: The Rise of Phishing as a Threat to Usability. IEEE Security & Privacy*, 20(2), 44–51.

6. Stallings, William, "Computer Security: Principles and Practice", Pearson, 4th Edition, 2018.

7. Whitman, Michael E., and Herbert J. Mattord, "Principles of Information Security", Cengage Learning, 6th Edition, 2017.

8. Jagatic, Tom N., et al, *"Social phishing"*, Communications of the ACM, vol. 50, no. 10, 2007, pp. 94-100.

9. Hong, Jason, "*The state of phishing attacks*", Communications of the ACM, vol. 55, no. 1, 2012, pp. 74-81.

10. Alazab, Mamoun, et al, "Cybercrime: The Case of Phishing", 2013 IEEE TrustCom Conference.